Search results for " 28A78"

showing 10 items of 11 documents

Riesz transform and vertical oscillation in the Heisenberg group

2023

We study the $L^{2}$-boundedness of the $3$-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz graphs in the first Heisenberg group $\mathbb{H}$. Inspired by the notion of vertical perimeter, recently defined and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant coefficients $\operatorname{osc}_{\Omega}(B(q,r))$. These coefficients quantify the vertical oscillation of a domain $\Omega \subset \mathbb{H}$ around a point $q \in \partial \Omega$, at scale $r > 0$. We then proceed to show that if $\Omega$ is a domain bounded by an intrinsic Lipschitz graph $\Gamma$, and $$\int_{0}^{\infty} \operatorname{osc}_{\Omega}(B(q,r)) \, \frac{dr}{…

Riesz transformNumerical Analysisintrinsic Lipschitz graphsApplied MathematicsHeisenberg groupFunctional Analysis (math.FA)Mathematics - Functional Analysis42B20 (Primary) 31C05 35R03 32U30 28A78 (Secondary)Mathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrysingular integralsAnalysis
researchProduct

Weakly controlled Moran constructions and iterated functions systems in metric spaces

2011

We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.

Pure mathematicsClosed set28A8028A80 28A78 (Primary); 37C45 (Secondary)General MathematicsHausdorff dimensionDynamical Systems (math.DS)Hausdorff measureCombinatoricsopen set conditionsemikonforminen iteroitu funktiojärjestelmäsemiconformal iterated function systemFOS: Mathematics37C45 (Secondary)Hausdorff measureHausdorff-ulottuvuusMathematics - Dynamical SystemsHausdorffin mittaMathematicsball condition37C45avoimen joukon ehtoMoran-konstruktiofinite clustering propertyInjective metric spaceHausdorff spaceMoran constructionäärellinen pakkautuminenConvex metric space28A80 28A78 (Primary)Metric spaceHausdorff distance28A78palloehtoNormal space
researchProduct

Combinatorial proofs of two theorems of Lutz and Stull

2021

Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}^{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} π_{e}(K) = \min\{\dim_{\mathrm{H}} K,1\} $$ for almost every $e \in S^{n - 1}$. Here $π_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatori…

FOS: Computer and information sciences28A80 (primary) 28A78 (secondary)General MathematicskombinatoriikkaCombinatorial proofComputational Complexity (cs.CC)01 natural sciencesCombinatoricsMathematics - Metric GeometryHausdorff and packing measures0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsAlgorithmic information theoryLemma (mathematics)Euclidean spacePigeonhole principle010102 general mathematicsOrthographic projectionHausdorff spaceMetric Geometry (math.MG)Projection (relational algebra)Computer Science - Computational ComplexityMathematics - Classical Analysis and ODEsfraktaalit010307 mathematical physicsmittateoria
researchProduct

Resonance between Cantor sets

2007

Let $C_a$ be the central Cantor set obtained by removing a central interval of length $1-2a$ from the unit interval, and continuing this process inductively on each of the remaining two intervals. We prove that if $\log b/\log a$ is irrational, then \[ \dim(C_a+C_b) = \min(\dim(C_a) + \dim(C_b),1), \] where $\dim$ is Hausdorff dimension. More generally, given two self-similar sets $K,K'$ in $\RR$ and a scaling parameter $s>0$, if the dimension of the arithmetic sum $K+sK'$ is strictly smaller than $\dim(K)+\dim(K') \le 1$ (``geometric resonance''), then there exists $r<1$ such that all contraction ratios of the similitudes defining $K$ and $K'$ are powers of $r$ (``algebraic resonance…

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)01 natural sciences010305 fluids & plasmasIrrational rotationCantor setIterated function systemMathematics - Classical Analysis and ODEs28A80 28A78Irrational numberHausdorff dimension0103 physical sciencesArithmetic progressionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical Systems0101 mathematicsAlgebraic numberScalingMathematics
researchProduct

$\Omega$-symmetric measures and related singular integrals

2019

Let $\mathbb{S} \subset \mathbb{C}$ be the circle in the plane, and let $\Omega: \mathbb{S} \to \mathbb{S}$ be an odd bi-Lipschitz map with constant $1+\delta_\Omega$, where $\delta_\Omega>0$ is small. Assume also that $\Omega$ is twice continuously differentiable. Motivated by a question raised by Mattila and Preiss in [MP95], we prove the following: if a Radon measure $\mu$ has positive lower density and finte upper density almost everywhere, and the limit $$ \lim_{\epsilon \downarrow 0} \int_{\mathbb{C} \setminus B(x,\epsilon)} \frac{\Omega\left((x-y)/|x-y|\right)}{|x-y|} \, d\mu(y) $$ exists $\mu$-almost everywhere, then $\mu$ is $1$-rectifiable. To achieve this, we prove first that if …

28A75 28A12 28A78Plane (geometry)Mathematics - Classical Analysis and ODEsGeneral MathematicsMathematical analysisSingular integralConstant (mathematics)OmegaMathematics
researchProduct

Plenty of big projections imply big pieces of Lipschitz graphs

2020

I prove that a closed $n$-regular set $E \subset \mathbb{R}^{d}$ with plenty of big projections has big pieces of Lipschitz graphs. This answers a question of David and Semmes.

General Mathematics010102 general mathematicsprojectionMetric Geometry (math.MG)Lipschitz continuity01 natural sciencesprojektiomatemaattinen analyysiCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrymittateoria010307 mathematical physics0101 mathematicsMathematicsInventiones mathematicae
researchProduct

Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

2018

A Semmes surface in the Heisenberg group is a closed set $S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $B(x,r)$ with $x \in S$ and $0 < r < \operatorname{diam} S$ contains two balls with radii comparable to $r$ which are contained in different connected components of the complement of $S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late $80$'s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of redu…

Closed setApplied MathematicsGeneral Mathematics010102 general mathematicsBoundary (topology)Metric Geometry (math.MG)CodimensionLipschitz continuitySurface (topology)01 natural sciencesCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric Geometrymittateoria[MATH]Mathematics [math]0101 mathematicsIsoperimetric inequalityComputingMilieux_MISCELLANEOUSMathematicsComplement (set theory)Transactions of the American Mathematical Society
researchProduct

On the Dimension of Kakeya Sets in the First Heisenberg Group

2021

We define Kakeya sets in the Heisenberg group and show that the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group is at least 3. This lower bound is sharp since, under our definition, the $\{xoy\}$-plane is a Kakeya set with Heisenberg Hausdorff dimension 3.

Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsApplied MathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsfraktaalitCondensed Matter::Strongly Correlated ElectronsMetric Geometry (math.MG)mittateoriaPrimary 28A75 Secondary 28A78 28A80
researchProduct

Generalized Lebesgue points for Sobolev functions

2017

In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$

Discrete mathematicsDominated convergence theoremmedian010102 general mathematicsLebesgue's number lemmaRiemann integralSobolev spaceLebesgue integration01 natural sciencesLebesgue–Stieltjes integrationFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicssymbols.namesakemetric measure spaceDifferentiation of integralsSquare-integrable function46E35 28A78FOS: MathematicssymbolsLocally integrable function0101 mathematicsgeneralized Lebesgue pointMathematicsCzechoslovak Mathematical Journal
researchProduct

Integrability of orthogonal projections, and applications to Furstenberg sets

2022

Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…

28A80 (primary) 28A78 44A12 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsIncidencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)k-plane transformCombinatorics (math.CO)Projections
researchProduct